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Abstract
Modeling abnormal spatiotemporal events is challenging since data belonging to abnormal activities are less in the course of a
surveillance stream. We solve this issue using a normality modeling approach, where abnormalities are detected as deviations
from the normal patterns. To this end, we propose a residual spatiotemporal autoencoder, which is trainable end-to-end to
carry out the anomaly detection task in surveillance videos. Irregularities are detected using the reconstruction loss, where
normal frames are reconstructed well with a low reconstruction cost, and the converse is identified as abnormal frames. We
evaluate the effect of residual connections in the STAE architecture and presented good practices to train an autoencoder
for video anomaly detection using benchmark datasets, namely CUHK-Avenue, UCSD-Ped2, and Live Videos. Comparisons
with the existing approaches prove that the effectiveness of residual blocks is incremental than going deeper with additional
layers to train a spatiotemporal autoencoder with good generalization across datasets.

Keywords Unsupervised anomaly detection · Surveillance videos · Residual connections · Spatiotemporal autoencoder ·
Real-time

1 Introduction

Recently, anomaly detection over surveillance videos has
gained a lot of research interest due to its direct applicability
in various domains such as video surveillance [23,28]. In an
unsupervised setting, anomaly detection is carried out as an
outlier detection problem. The aim is to learn a model of nor-
mal events using segments of normal activities from training
data and detect events that deviate from the learned model
while testing. The problem turns out to be more complicated
when the data points exist in a high dimension. The existing
approaches for abnormality detection use either handcrafted
or deep features to characterize the spatiotemporal patterns.

B S. Chandrakala
chandrakala@cse.sastra.edu ; sckala@cse.iitm.ac.in

K. Deepak
deepak@sastra.ac.in ; deepu6892@gmail.com

C. Krishna Mohan
ckm@iith.ac.in

1 Intelligent Systems Group, School of Computing, SASTRA
University, Thanjavur 613401, India

2 Visual Learning and Intelligence Group, Department of
Computer Science and Engineering, Indian Institute of
Technology, Hyderabad, India

Ghrab et al. [6] used trajectory-based feature descriptors
and performed hierarchical clustering to remove noise from
the training data. Kaltsa et al. [13] extracted spatiotempo-
ral cubes and obtained a merged feature vector comprising
of Histograms of Oriented Gradients (HOG) for the spatial
information and Histogram of Oriented Swarm Acceleration
(HOSA) to capture temporal dynamics.

Deep networks can be used for the extraction of data-
driven high-level descriptors. In deep feature learning meth-
ods [26,33], the image patches are represented using features
learned from deep-neural networks and a one-class classifier
such as one-class SVM is used to detect the anomalies. In an
approach proposed byHu et al. [10], a deep incremental slow
feature analysis (D-IncSFA) was used as a pipeline network
to extract features and detect anomalies.

The spatiotemporal deep autoencoders [8,20] are used to
model high- dimensional data in an unsupervised/weakly
supervised setting. The latent representation formed out of
the encoder part acts as a compressed form of the input video
segment, but contained with typical patterns of the data. In
unsupervised anomaly detection, the autoencoder is trained
on normal segments by minimizing their cost of reconstruc-
tion, and then, reconstruction cost is used as a threshold to
detect anomalies. It is generally assumed that the reconstruc-
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tion error will be lower for the normal segments since they
are close to the training data, while the reconstruction error
becomes higher for the abnormal segments [7,8]. Recently,
Hasan et al. [8] propose to learn temporal regularities in
videos using a 2D convolutional autoencoder. It can learn
both the feature representation and the temporal visual char-
acteristics of regular patterns in an end-to-end manner, and
it is also claimed to be computationally more efficient than
approaches that use sparse coding on large video datasets.

To obtain more accurate detection of abnormal visual
patterns, we develop a residual spatiotemporal autoencoder
(R-STAE), which is end-to-end trainable. Given the video
segments of normal activities as training data, the proposed
R-STAE performs unsupervised learning of the spatiotem-
poral representation of normal patterns and reconstruct them
with low errors. In summary, the proposed R-STAE uses
residual blocks to mitigate the vanishing gradient problem.
Implemented in an end-to-end manner, the R-STAE pro-
vides promising performance for spatiotemporal abnormality
detection.

2 Related work

Due to the contextually varying characteristics of abnormal
events, most of the approaches deal with anomaly by con-
sidering them as outliers by modeling the normality that
persists in the training data. A two-stage algorithm based
on K-means clustering and OCSVM [11] was proposed to
eliminate outliers by clustering the spatiotemporal cubes of
normal activities. A generative model that captures temporal
patterns was built using a fully connected autoencoder [8]
which learns from local spatiotemporal features. Liu et al.
[18] used a generative U-Net [25] and an optical Flow-Net
[5] to predict the consecutive frame and thereby determine
the anomaly by comparing it with the original frame. Revathi
et al. [24] proposed to use an object tracking approach for
feature extraction and a deep learning classifier to detect
anomalies in videos.

Detecting anomalous events largely depends on the tem-
poral ordering of its video structure. Del Giorno et al. [4]
break this dependency by computing spatiotemporal descrip-
tors which are shuffled among several classifiers. The scores
of these classifiers are aggregated to determine the anomaly
score. Recently, long short-term memory (LSTM) is used
for addressing various tasks in the domains of speech recog-
nition, natural language processing, and action recognition.
Swathikaran Sudhakaran et al. used the convolutional long
short-term memory [27], a variant of LSTM for aggregating
frame-level features from a video to detect violent activities.

Tudor Ionescu et al. [30] proposed a framework that used
a binary classifier that is trained iteratively to differentiate
between two continuous video segments and remove themost

discriminant features. A real-time end-to-end trainable two-
stream network [1] was proposed for action detection. In
this approach, optical flow is computed using FlowNet [5]
which is fed as input to the motion stream. Early fusion is
applied by concatenating the activations from both streams,
and the whole network is trained end to end. Gong et al. [7]
introduced amemory-augmented autoencoderwhich updates
memory elements representing the normal characteristics of
the input data. The intuition behind theGong et al. [7]method
is based on the fact that the model can sometimes learn to be
more generalized and hence reconstruct abnormal segments
significantlywell. This will make the discrimination between
normal and abnormal segments difficult in the testing phase.

3 Residual spatiotemporal autoencoder for
detecting unusual events in surveillance
videos

Powerful deep learning architectures that effectively cap-
ture the variations between anomalous and normal activities
are considered to be of prime importance in case of detect-
ing anomalies in unconstrained videos. Being a data-driven
approach, deep models help in learning more generalized
patterns that cover intra-class variations prevalent in various
normal activities. In a recent method [3], they used two-
stream residual networks for action recognition. As opposed
to this, we propose to use a single stream residual spatiotem-
poral autoencoder (R-STAE) architecture to detect unusual
events in surveillance videos as shown in Fig. 1.

3.1 Normality modeling using residual
spatiotemporal autoencoder (R-STAE)

The aim is to extract spatiotemporal representations that can
distinguish normal and abnormal events in video segments
given as inputs. We propose to use residual spatiotemporal
autoencoder (R-STAE) which consists of 3D convolution,
deconvolution, and Conv.LSTM layers to learn patterns of
normal activities from surveillance videos. Recent advance-
ments in deep learning approaches enable the autoencoders
to effectively encode any given data distribution with mini-
mal loss of information.

The residual spatiotemporal autoencoder shown in Fig. 1
consists of eight layers with four layers in the encoder and
decoder part each. The encoder part comprises of three 3D
convolution layers with 256, 128, and 64 units, respectively.
The convolution layers are used to extract spatial information
from the given input video segments. The convolution opera-
tion is amatrixmultiplication between thefilter and the image
patches with the help of a sliding window. Since ReLU’s
activation values have no upper bounds, hyperbolic tangent
(tanh) is used as activation to ensure the property of symme-
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Fig. 1 Training residual
spatiotemporal autoencoder for
video anomaly detection

Fig. 2 Testing phase of residual
spatiotemporal autoencoder for
video anomaly detection

try in encoder and decoder functions. Batch normalization
(BN) is employed as one of the regularization techniques to
improve the training efficiency of the R-STAE. Conv.LSTM
[32] layer is used in both the encoder and decoder parts of the
R-STAE, respectively. Simple LSTMs cannot retain appear-
ance information of video sequences. Thus, to capture the
temporal dynamics of video sequences along with spatial
information, Conv.LSTMwas introducedwhere all the states
are 3D tensors and can accommodate spatial dimensions. Let
x be the input sequence at time step t , h is the hidden state,
and gates are given by i, f, o with the cell output C. The con-
volution operation is given by �, � is the Hadamard product,
W denotes the weight matrices, and bias vectors are given
by b. As provided in [32], Conv.LSTM is given by:

it = σ(Wi�[xt , ht−1] + Wi � Ct−1 + bi ) (1)

ft = σ(W f �[xt , ht−1] + W f � Ct−1 + b f ) (2)

ot = σ(Wo�[xt , ht−1] + Wo � Ct + bo) (3)

Ct = ft � Ct−1 + it � tanh(Wc�[xt , ht−1] + bc) (4)

ht = ot � tanh(Ct ) (5)

Apart from the Conv.LSTM layer, the decoder part con-
sists of deconvolutional layers [34] also known as the
convolutional transpose layers used for reconstruction. The
hyper-parameters such as kernel size, the number of kernels,
and strides were determined empirically beforehand while
the kernel values are allowed to be initialized randomly.

Residual networks Motivated by the recent action recog-
nition approaches [3,12], we utilize Residual Networks [9]
(ResNet) to overcome the vanishinggradients problempreva-
lent in deep networks. The residual blocks used in our
architecture are shown in Fig. 1. A basic residual block in a
residual network contains an identity skip connection besides
the existing convolution layers. This helps in propagating the
information from the previous layers and also contributes to
gradient flow during backpropagation, thus controlling the
vanishing gradient problem. The equation of a residual block
with input x is given by,

y = F(x) + x (6)

The training is performedbased on the reconstruction loss:

e = ‖ Vi − V̂i ‖2 (7)

where Vi is the input video segment and V̂i is the recon-
structed video segment. Video segments are given to the
R-STAE from which a model of normal activities is learned
while reconstructing the given input. The testing is carried out
as shown in Fig. 2. The average squared difference between
the reconstructed frame and the actual frame is computed
using the mean squared error (MSE). This is because the
MSE values will be less for the normal frame and higher for
an abnormal frame (since the model is trained for normal-
ity). Next, the normality score for a frame is obtained with
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Table 1 Architecture of the
proposed R-STAE

Layer Output-Map Dim. Kernel Stride Output channel

Image 112 × 112 × 8 – – –

Conv-3D 1 (tanh) 56 × 56 × 4 4 × 4 × 4 2 256

Conv-3D 2 (tanh) 28 × 28 × 2 4 × 4 × 4 2 128

Conv-3D 3 (tanh) 14 × 14 × 1 4 × 4 × 4 2 64

Conv.LSTM (Conv) 14 × 14 × 1 2 × 2 1 64

Residual Block 1 (2 layers with skip connections)

Conv-3D 4 (tanh) 14 × 14 × 1 3 × 3 × 1 1 64

Conv-3D 5 (tanh) 14 × 14 × 1 3 × 3 × 1 1 64

Residual Block 2 (2 layers with skip connections)

Conv-3D 6 (tanh) 14 × 14 × 1 3 × 3 × 1 1 64

Conv-3D 7 (tanh) 14 × 14 × 1 3 × 3 × 1 1 64

Residual Block 3 (2 layers with skip connections)

Conv-3D 8 (tanh) 14 × 14 × 1 3 × 3 × 1 1 64

Conv-3D 9 (tanh) 14 × 14 × 1 3 × 3 × 1 1 64

Conv.LSTM (De-Conv) 14×14×1 2×2 1 64

DeConv-3D 1(tanh) 28×28×2 4×4×4 2 64

DeConv-3D 2(tanh) 56×56×4 4×4×4 2 128

DeConv-3D 3(tanh) 112×112×8 4×4×4 2 256

Bold indicates the highest result achieved for the corresponding approach/configuration

Fig. 3 Reconstruction loss for LV (Live Videos) dataset without resid-
ual blocks (Blue), reconstruction loss with residual blocks (Orange)
(color figure online)

the formula,

normscore = 1 − (MSE − min(MSE))/max(MSE)) (8)

Normality scores for the total number of testing frames are
computed, and it will be in the range [0–1]. A threshold value
is empirically chosen as 0.7, which implies that if the nor-
mality score is greater than 0.7, the test example is labeled
as normal and the converse is abnormal.

The aim is to achieve a meaningful reconstruction of the
normal video segments. To achieve this, the reconstruction
loss during the training phase has to be decreased through

architectural stability. No pre-trained network has been used
in the training phase for the purpose of feature extraction.
The input to the R-STAE network is a video segment com-
prised of a sequence of stacked grey-scale images rather than
images with RGB channels. This helps in alleviating the bur-
den of reconstructing redundant information in the frames
during testing. The dimension of the input video segment is
112*112*1*8, where 1 indicates the number of channels in
the image, and 8 is the number of continuous frames forming
a video segment. Data augmentation does not help much in
reducing reconstruction loss during training.

The overall architecture of the proposed R-STAE is shown
in Table 1. The input to the R-STAE network is a video
segment comprising of eight continuous frames with a res-
olution of 112*112. The transformed size of feature maps
in every layer including residual layers is also presented in
Table 1. Our R-STAE architecture consists of three convo-
lution layers, one Conv.LSTM layer in the encoder part and
three deconvolution layers, one Conv.LSTM (DeConv) layer
in the decoder part with residual blocks placed in-between
encoder and decoder blocks.Max Pooling layers are not used
to avoid the loss of spatial information in the input frames.
The effect of adding residual blocks to the R-STAE network
is observed in Fig. 3. When studied on LV dataset, it can be
observed that adding residual blocks to the network helps in
achieving low reconstruction loss when compared to that of
the network with no residual blocks.

123



Signal, Image and Video Processing

4 Experimental studies

4.1 Datsasets used

The datasets used for the experiments are designed for unsu-
pervised modeling (i.e) the training data contain only normal
videos while the testing data will contain both normal and
abnormal videos. In CUHK Avenue [19] dataset, there are
a total of 16 training and 21 testing clips each of duration
not more than two minutes. A total of 15,328 and 15,324
frames are present in training and testing, respectively. The
resolution of each frame is 360*640, and the frame rate
for the video clips is 25 frames per second (fps). The Live
Videos (LV) [17] dataset consists of 30 videos in total each of
which is a unique scenario containing both training/testing
sequences. The frame rate varies from 7.5 to 30 frames per
second with a minimum resolution of 176*144 and a maxi-
mum of 1280*720. UCSD Ped2 [21] dataset is composed
of 16 training and 12 testing videos with a resolution of
240 ∗ 360 pixels. Some abnormal events in the above- men-
tioned datasets include throwing objects, pedestrian walk
way anomalies, violence and robbery, etc.

4.2 Implementation

4.2.1 Preprocessing and training

Each frame in an input video is resized to a resolution of
112*112. A set of eight consecutive frames are grouped
to form video segments of constant duration. The R-STAE
architecture is implemented on Keras deep learning frame-
work. Experiments are conducted onNVIDIAQuadro P5000
GPU. The autoencoder is optimized with Adam optimizer
[15], which is a simple and efficient approach. tanh activation
was used in the 3DConvolutional layers as tanhprovides non-
linearity and effectively learns the underlying patterns. The
dropout values are empirically chosen in the Conv.LSTM
layers to avoid the problem of over-fitting. The model was
trained batch-wise with a batch size of 16. The reconstruc-
tion time of a frame (on one Quadro P5000 GPU) is 0.07s,
detection time is 0.05s, and total time is 0.12s. To evaluate
the performance of the proposed approach over the above-
mentioned datasets, its corresponding AUC scores are used.

4.3 Performance analysis

Comparisons are made among existing state-of-art methods
and our proposed approach as shown in Tables 2, 3, and 4
for the datasets Avenue [19], LV [17], and UCSD-Ped2 [21],
respectively. ForAvenuedataset,Hasan et al. [8] haveutilized
an end-to-end framework which uses convolutional autoen-
coder with standard HOG, HOF, and raw videos as inputs
to learn the temporal regularity in video sequences and the

Table 2 Performance over Avenue dataset

S. no Method AUC

1 Conv-Autoencoder [8] 0.70

2 Discriminative framework [4] 0.78

3 STAE-Grayscale [35] 0.77

4 STAE-optflow [35] 0.81

5 Sparse combination learning [19] 0.81

6 Conv-WTA+SVM [29] 0.82

7 MemAE [7] 0.83

8 Wang et al. [31] 0.85

9 STAE 0.79

10 R-STAE 0.82

Bold indicates the highest result achieved for the corresponding
approach/configuration

Table 3 Performance over LV dataset

S. no Method AUC

1 Sparse dictionary [19] 0.11

2 H.264 [2] 0.15

3 Binary features [16] 0.18

4 K-Means with BS [14] 0.25

5 KUGDA with BS [14] 0.26

6 Conv-Autoencoder [8] 0.34

7 Conv.LSTM-Autoencoder [20] 0.39

8 STAE 0.61

9 R-STAE 0.63

Bold indicates the highest result achieved for the corresponding
approach/configuration

model is trained using the reconstruction loss. A convolu-
tional winner-take-all autoencoder (CONV-WTA) that takes
only optical flow sequences to model normal events was pro-
posed by Hanh et al. [29]. Instead of reconstruction loss, this
approach utilizes OC-SVM to detect anomalies. As shown in
Table 2, the proposed deep R-STAE approach is comparable
to [7,31] and outperforms other state-of-the-art methods. The
sharp increase in the detection performance of the MemAE
[7] method is due to the reason that they have used a sepa-
ratememorymodule to store the prototypical normal patterns
which are then used to reconstruct the input video segments.

Even though the LV dataset is highly challenging due to
its varying contextual nature, we have achieved significant
improvement when compared to other methods applied over
this dataset as shown in Table 3. The rejection of motion out-
lier [14] approach incorporated a hardware friendly approach
with the help of KUGDA (Univariate Gaussian Discrimi-
nant Analysis) for anomaly detection. Even though the least
frame processing time is achieved by the Biswas et al. [2]
method, they did not use any methods such as optical flow
or background subtraction methods to derive the motion fea-
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Fig. 4 Reconstruction of frames belonging to UCSD-PED2 dataset. Top row: original frames. Bottom row: reconstructed frames using R-STAE

Table 4 Performance over UCSD-Ped 2 dataset

S. no Method AUC

1 Social force [22] 0.56

2 MPPCA+Social force [21] 0.69

3 Unmasking [30] 0.82

4 Conv.Autoencoder [8] 0.90

5 MemAE [7] 0.94

6 STAE 0.78

7 R-STAE 0.83

Bold indicates the highest result achieved for the corresponding
approach/configuration

Table 5 Results for different numbers of residual blocks in the
R-STAE

Residual blocks Avenue (AUC) LV (AUC) Ped2 (AUC)

Without resnet 0.79 0.61 0.78

1 0.79 0.61 0.81

2 0.81 0.62 0.81

3 0.82 0.63 0.83

4 0.82 0.63 0.83

Bold indicates the highest result achieved for the corresponding
approach/configuration

Fig. 5 Comparison of frame-wise ROC curve for STAE and R-STAE
approaches on the LV dataset (Prediction scores are sampled alterna-
tively with N = 4 to obtain better clarity of the curve)

tures which resulted in a major compromise of performance.
Since each video contains a different scenario, it demands a
generalized framework that can operate in a variety of envi-
ronments. The R-STAE approach significantly outperforms
the state-of-the-art techniques. With the help of confusion
matrices, it can be observed that the number of false posi-

Table 6 Results for different
sizes of hidden units in
Conv.LSTM layer of R-STAE

Units in C.LSTM Network parameters Avenue (AUC) LV (AUC) Ped2 (AUC)

16 4,929,313 0.76 0.57 0.81

32 5,155,329 0.81 0.60 0.81

64 5,764,033 0.82 0.63 0.83

128 7,608,129 0.82 0.62 0.83

Bold indicates the highest result achieved for the corresponding approach/configuration
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Fig. 6 Training loss on UCSD-Ped2 dataset—tanh (Orange) versus
ReLU (Blue) activation functions (color figure online)

tives in the R-STAE approach is comparatively less than that
of the STAE without residual blocks.

When compared to other datasets, UCSD-Ped2 is a
relatively small dataset and less complex in nature. The
proposed R-STAE approach improves the frame-level detec-
tion performance by about 14% when compared with the
MPPCA+Social Force [21] approach. Still, the R-STAE
achieves only comparable results when compared to other
state-of-the-art approaches given in Table 4. One possible
justification for slightly degraded performance of the R-
STAE in UCSD-Ped2 would be due to a smaller number
of training examples present in the UCSD Ped2 dataset.
The sparse regularization technique and addition of memory
module seem to be steadily beneficial for the anomaly detec-
tion task since the MemAE [7] approach consistently proves
its significance in bothAvenue andUCSDPed2 datasets. Fig-
ure 4 shows a visual analysis of detection performance over
the UCSD ped2 dataset. Unusual objects such as vehicles
move comparably faster than normal objects such as pedes-
trians. Therefore, abnormal moving objects in the frames are
blurry because of the high reconstruction error. Overall, the
normality scores corresponding to segments of normal events
are higher than those of unusual events which proves the sig-
nificance of the proposed R-STAE approach.

4.4 Ablation studies

In this section, we compare the effects of the following: (1)
the influence of residual blocks in detection performance,
(2) Conv.LSTM layer with varying dimensions, and (3) the
effect of tanh activation function against the ReLU activa-
tion function. The influence of residual blocks added to the
network is presented in Table 5 and Fig. 5. Three residual
blocks improve the accuracy of up to 3% for all datasets,
whereas adding the residual blocks higher than three showed
no improvement. From Fig. 5, it is also observed that the R-

STAE approach significantly achieved a better area under the
curve when compared to STAE architecture without residual
blocks.

To ensure the reconstruction ability of the R-STAE archi-
tecture, the hidden units of the Conv.LSTM layer is chosen
empirically to achieve a trade-off between performance and
the total network parameters. The effect of the number of
hidden units assigned to the Conv.LSTM layer is presented
in Table 6. The number of hidden units in the Conv.LSTM
layer is used to form a compressed representation of a video
segment. A minimum number of hidden units may lead to
more loss of information, whereas a large number of hidden
units in the Conv.LSTM layer might introduce redundancy in
the latent representation. In our experiments, the convolution
LSTM layer with 64 hidden units provides better reconstruc-
tion for all three datasets. Another observation on the ablation
study is presented in Fig. 6. It is seen that the usage of the
tanh activation function helps in achieving lower training loss
when compared to ReLU for the R-STAE network over the
UCSDPed2 dataset.

5 Conclusion

Recently, spatiotemporal autoencoder-based approaches are
promising in detecting anomalous activities in surveillance
videos. We propose to use an end-to-end residual spatiotem-
poral autoencoder (R-STAE) for unusual event detection in
videos.Our experiments onvarious benchmarkdatasets show
that the proposed architecture is able to perform frame-level
abnormality detection quite well with the help of resid-
ual blocks. Three residual blocks along with Conv.LSTM
layers in the proposed R-STAE architecture provides consis-
tently better detection performance. The results against some
state-of-the-artmethods proved the effectiveness of proposed
R-STAE architecture.
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